Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1.
نویسندگان
چکیده
HKUST-1, a metal-organic framework (MOF) material containing Cu(II)-paddlewheel-type nodes and 1,3,5-benzenetricarboxylate struts, features accessible Cu(II) sites to which solvent or other desired molecules can be intentionally coordinated. As part of a broader investigation of ionic conductivity in MOFs, we unexpectedly observed substantial proton conductivity with the "as synthesized" version of this material following sorption of methanol. Although HKUST-1 is neutral, coordinated water molecules are rendered sufficiently acidic by Cu(II) to contribute protons to pore-filling methanol molecules and thereby enhance the alternating-current conductivity. At ambient temperature, the chemical identities of the node-coordinated and pore-filling molecules can be independently varied, thus enabling the proton conductivity to be reversibly modulated. The proton conductivity of HKUST-1 was observed to increase by ~75-fold, for example, when node-coordinated acetonitrile molecules were replaced by water molecules. In contrast, the conductivity became almost immeasurably small when methanol was replaced by hexane as the pore-filling solvent.
منابع مشابه
Mechanical Synthesis of Zn-HKUST-1 Metal-Organic Framework and Investigation its Fluorescence Sensing Ability Toward to Detect Explosive-like Nitro aromatic Analytes Such as TNT
Metal-Organic Framework (MOFs) are new crystalline materials which because of having propertiessuch as high porosity, optical and electrical properties, etc., have been considered in areas such as gasstorage, catalysis, pollutants removal and so on. Therefore, in order to develop these compounds andtheir use in this study, in this work, Zn-HKUST-1 metal-organic framework was synthesized by fast...
متن کاملPreparation and Drug-Delivery Properties of Metal-Organic Framework HKUST-1
In this research, the metal-organic framework of HKUST-1 (Hong Koung University of Science and Technology) was synthesized for use in modern drug delivery systems by the thermal solvent method. It was activated in two conditions: under vacuum pressure and by a freeze-drying method. The synthesized HKUST-1 Metal-Organic Framework was analyzed by IR, XRD, BET, and SEM. In order to examine and com...
متن کاملPorous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8 (ZIF-8)
Metal-organic frameworks (MOFs) are emerging material class for the past few years due to its tailorability characteristics for various applications. However, the research and development (R&D) of MOFs is still scarce for fuel cell system. This may be due to the several difficulties faced in selecting a good MOFs-based electrolyte, which consequently affects both proton conduction and methanol ...
متن کاملChemical principles underpinning the performance of the metal–organic framework HKUST-1
A common feature of multi-functional metal-organic frameworks is a metal dimer in the form of a paddlewheel, as found in the structure of Cu3(btc)2 (HKUST-1). The HKUST-1 framework demonstrates exceptional gas storage, sensing and separation, catalytic activity and, in recent studies, unprecedented ionic and electrical conductivity. These results are a promising step towards the real-world appl...
متن کاملProtecting metal-organic framework crystals from hydrolytic degradation by spray-dry encapsulating them into polystyrene microspheres.
Many metal-organic frameworks are water labile, including the iconic Hong-Kong University of Science and Technology-1 (HKUST-1). Spray-dry encapsulation of HKUST-1 crystals into polystyrene microspheres is reported here to yield composites that are resistant to water but retain most of the excellent gas sorption capacity of HKUST-1. These composites are demonstrated to exhibit superior water ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 1 شماره
صفحات -
تاریخ انتشار 2012